456=900-16t^2

Simple and best practice solution for 456=900-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 456=900-16t^2 equation:



456=900-16t^2
We move all terms to the left:
456-(900-16t^2)=0
We get rid of parentheses
16t^2-900+456=0
We add all the numbers together, and all the variables
16t^2-444=0
a = 16; b = 0; c = -444;
Δ = b2-4ac
Δ = 02-4·16·(-444)
Δ = 28416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28416}=\sqrt{256*111}=\sqrt{256}*\sqrt{111}=16\sqrt{111}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{111}}{2*16}=\frac{0-16\sqrt{111}}{32} =-\frac{16\sqrt{111}}{32} =-\frac{\sqrt{111}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{111}}{2*16}=\frac{0+16\sqrt{111}}{32} =\frac{16\sqrt{111}}{32} =\frac{\sqrt{111}}{2} $

See similar equations:

| -8-7(8x-6)=-9x-3 | | 2(x+1)+4=20 | | 1000=250-16t^2 | | 500=100-16t^2 | | q+2q−3q+2q−q=16 | | x=1.9+.3x | | x/6+24=24 | | 19=6x+7-3x | | X2+9x=7 | | 3m-2(m+3)=3 | | 3x-8x-8x=x | | 1/2x-8-3/x-4=5 | | 4x-10=x=8 | | 456=200-16t^2 | | 2=9-3x | | 6/5u-4/5u=5/3+5/3 | | -10t+5t^2=100 | | -0.06y+0.15(8,000-y)=0.04y | | 5^2x-1=75 | | 570=418-16t^2 | | 0=x^2+49-25 | | 4e-3=2e+4 | | 10-2x=20+3x | | x2+8x=−15 | | 456=418-16t^2 | | 2(1.4+1.4y)=5y | | 6x-1=7x-5 | | 23+5x=53 | | 2(x−3)2=0 | | 2500=250-16t^2 | | 2x^2+5x−3=0 | | 11=a-5.5 |

Equations solver categories